Что такое интерпретация в программировании
Перейти к содержимому

Что такое интерпретация в программировании

  • автор:

Интерпретация (информатика)

Простой интерпретатор анализирует и тут же выполняет (собственно интерпретация) программу покомандно (или построчно), по мере поступления её исходного кода на вход интерпретатора. Достоинством такого подхода является мгновенная реакция. Недостаток — такой интерпретатор обнаруживает ошибки в тексте программы только при попытке выполнения команды (или строки) с ошибкой.

Интерпретатор компилирующего типа — это система из компилятора, переводящего исходный код программы в промежуточное представление, например, в байт-код или p-код, и собственно интерпретатора, который выполняет полученный промежуточный код (так называемая виртуальная машина). Достоинством таких систем является большее быстродействие выполнения программ (за счёт выноса анализа исходного кода в отдельный, разовый проход, и минимизации этого анализа в интерпретаторе). Недостатки — большее требование к ресурсам и требование на корректность исходного кода. Применяется в таких языках, как Python, СУБД (используется p-код).

В случае разделения интерпретатора компилирующего типа на компоненты получаются компилятор языка и простой интерпретатор с минимизированным анализом исходного кода. Причём исходный код для такого интерпретатора не обязательно должен иметь текстовый формат или быть байт-кодом, который понимает только данный интерпретатор, это может быть машинный код какой-то существующей аппаратной платформы. К примеру, виртуальные машины вроде Bochs, процессоров семейства Lisp, Python, Бейсик и других) могут работать в режиме диалога или так называемого цикла чтения-вычисления-печати (англ. read-eval-print loop,

Уникальным является язык Forth, который способен работать как в режиме интерпретации, так и компиляции входных данных, позволяя переключаться между этими режимами в произвольный момент, как во время трансляции исходного кода, так и во время работы программ.

Следует также отметить, что режимы интерпретации можно найти не только в программном, но и аппаратном обеспечении. Так, многие микропроцессоры интерпретируют машинный код с помощью встроенных микропрограмм, а процессоры семейства x86, начиная с Intel P6), во время исполнения машинного кода предварительно транслируют его во внутренний формат (в последовательность микроопераций).

Алгоритм работы простого интерпретатора

  1. прочитать инструкцию;
  2. проанализировать инструкцию и определить соответствующие действия;
  3. выполнить соответствующие действия;
  4. если не достигнуто условие завершения программы, прочитать следующую инструкцию и перейти к пункту 2.

Достоинства и недостатки интерпретаторов

Достоинства

  • Бо́льшая переносимость интерпретируемых программ — программа будет работать на любой платформе, на которой есть соответствующий интерпретатор.
  • Как правило, более совершенные и наглядные средства диагностики ошибок в исходных кодах.
  • Упрощение отладки исходных кодов программ.
  • Меньшие размеры кода по сравнению с машинным кодом, полученным после обычных компиляторов.

Недостатки

  • Интерпретируемая программа не может выполняться отдельно без программы-интерпретатора. Сам интерпретатор при этом может быть очень компактным.
  • Интерпретируемая программа выполняется медленнее, поскольку промежуточный анализ исходного кода и планирование его выполнения требуют дополнительного времени в сравнении с непосредственным исполнением машинного кода, в который мог бы быть скомпилирован исходный код.
  • Практически отсутствует оптимизация кода, что приводит к дополнительным потерям в скорости работы интерпретируемых программ.

Примечания

  1. ГОСТ 19781-83; СТ ИСО 2382/7-77 // Вычислительная техника. Терминология: Справочное пособие. Выпуск 1 / Рецензент канд. техн. наук Ю. П. Селиванов. — М.: Издательство стандартов, 1989. — 168 с. — 55 000 экз. — ISBN 5-7050-0155-X
  2. Першиков В. И., Савинков В. М. Толковый словарь по информатике / Рецензенты: канд. физ.-мат. наук А. С. Марков и д-р физ.-мат. наук И. В. Поттосин. — М.: Финансы и статистика, 1991. — 543 с. — 50 000 экз. — ISBN 5-279-00367-0
  3. Борковский А. Б. Англо-русский словарь по программированию и информатике (с толкованиями). — М.: Русский язык, 1990. — 335 с. — 50 050 (доп.) экз. — ISBN 5-200-01169-3
  4. Толковый словарь по вычислительным системам = Dictionary of Computing / Под ред. В. Иллингуорта и др.: Пер. с англ. А. К. Белоцкого и др.; Под ред. Е. К. Масловского. — М.: Машиностроение, 1990. — 560 с. — 70 000 (доп.) экз. — ISBN 5-217-00617-X (СССР), ISBN 0-19-853913-4 (Великобритания)

См. также

Wikimedia Foundation . 2010 .

  • Интерпретации квантовой механики
  • Интерпретация Пуанкаре

Полезное

Смотреть что такое «Интерпретация (информатика)» в других словарях:

  • П:Ф — Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание География · История · Общество · Персоналии · Религия · Спорт · Техника · Наука · Искусство · Философия … Википедия
  • Аналитик — (Analyst) Специалист, работник фирмы, банка Информация о сфере деятельности аналитиков, финансовая и бизнес аналитика, аналитика валютного и фондового рынка Содержание >>>>>>>> Аналитик это, оределение История Аналитика появилась тогда, когда… … Энциклопедия инвестора
  • Квантовая запутанность — Квантовая механика … Википедия
  • Математика гармонии — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/22 ноября 2012. Пока процесс обсуждени … Википедия
  • Информация — (Information) Информация это сведения о чем либо Понятие и виды информации, передача и обработка, поиск и хранение информации Содержание >>>>>>>>>>>> … Энциклопедия инвестора
  • История математики — История науки … Википедия
  • Математика Древнего Востока — История науки По тематике Математика Естественные науки … Википедия
  • СЕМИОТИКА — (от греч. semeiot знак) общая теория знаковых систем, изучающая свойства знаковых комплексов самой различной природы. К таким системам относятся естественные языки, письменные и устные, разнообразные искусственные языки, начиная с формализованных … Философская энциклопедия
  • Тест Тьюринга — Стандартная интерпретация теста Тьюринга Тест Тьюринга эмпирический тест, идея которого была предложена Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ. … Википедия
  • Искусственный интеллект — Запрос «ИИ» перенаправляется сюда; см. также другие значения. Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ… … Википедия
  • Обратная связь: Техподдержка, Реклама на сайте
  • �� Путешествия

Экспорт словарей на сайты, сделанные на PHP,
WordPress, MODx.

  • Пометить текст и поделитьсяИскать в этом же словареИскать синонимы
  • Искать во всех словарях
  • Искать в переводах
  • Искать в ИнтернетеИскать в этой же категории

Что такое компиляция в программировании?

Одной из ключевых характеристик PHP является то, что это интерпретируемый язык программирования. С другой стороны, языки программирования наподобие C , изначально разрабатывались для компиляции. Что это значит?

Компилируется ли язык программирования или интерпретируется, на самом деле это не зависит от природы языка программирования. Любой язык программирования может интерпретироваться так называемым интерпретатором или компилироваться с помощью так называемого компилятора.

Обновлено: 2022-09-08 17:45:32 Вадим Дворников автор материала

Рабочий цикл программы

При использовании любого языка программирования существует определенный рабочий цикл создания кода. Вы пишете его, запускаете, находите ошибки и отлаживаете. Таким образом, вы переписываете и дописываете программу, проверяете ее. То, о чем пойдет речь в этой статье, это » запускаемая » часть программы.

Когда пишете программу, вы хотите, чтобы ее инструкции работали на компьютере. Компьютер обрабатывает информацию с помощью процессора, который поэтапно выполняет инструкции, закодированные в двоичном формате. Как из выражения « a = 3; » получить закодированные инструкции, которые процессор может понять?

Мы делаем это с помощью компиляции. Существует специальные приложения, известные как компиляторы. Они принимают программу, которую вы написали. Затем анализируют и разбирают каждую часть программы и строят машинный код для процессора. Часто его также называют объектным кодом.

На одном из этапов процесса обработки задействуется компоновщик, принимающий части программы, которые отдельно были преобразованы в объектный код, и связывает их в один исполняемый файл. Вот схема, описывающая данный процесс:

Рабочий цикл программы

Конечным элементом этого процесса является исполняемый файл. Когда вы запускаете или сообщаете компьютеру, что это исполняемый файл, он берет первую же инструкцию из него, не фильтрует, не преобразует, а сразу запускает программу и выполняет ее без какого-либо дополнительного преобразования. Это ключевая характеристика процесса компиляции — его результат должен быть исполняемым файлом, не требующим дополнительного перевода, чтобы процессор мог начать выполнять первую инструкцию и все следующие за ней.

Первые компиляторы были написаны непосредственно через машинный код или с использованием ассемблеров. Но цель компилятора очевидна: перевести программу в исполняемый машинный код для конкретного процессора.

Некоторые языки программирования разрабатывались с учетом компиляции. C , например, предназначался для того, чтобы дать возможность программистам с легкостью реализовать разные вещи. Но в итоге он разрабатывался таким образом, чтобы его можно было легко перевести на машинный код. Компиляция в программировании это серьезно!

Не все языки программирования учитывают это в своей концепции. Например, Java предназначался для запуска в « интерпретирующей » среде, а Python всегда должен интерпретироваться.

Интерпретация программы

Альтернативой компиляции является интерпретация. Чем отличаются компиляторы и интерпретаторы? Основная разница между компилятором и интерпретатором заключается в том, как они работают. Компилятор берет всю программу и преобразует ее в машинный код, который понимает процессор.

Интерпретатор — это исполняемый файл, который поэтапно читает программу, а затем обрабатывает, сразу выполняя ее инструкции.

Другими словами, программа-интерпретатор выполняет программу поэтапно как часть собственного исполняемого файла. Объектный код не передается процессору, интерпретатор сам является объектным кодом, построенным таким образом, чтобы его можно было вызвать в определенное время.

Это ломает рабочий цикл, который был приведен на диаграмме выше. Теперь у нас есть новая диаграмма:

Интерпретация программы

На ней мы видим, что в отличии от компилятора, интерпретатор всегда должен быть под рукой, чтобы мы могли вызвать его и запустить нашу программу. В некотором смысле интерпретатор становится процессором. Программы, написанные для интерпретации, называются « скриптами », потому что они являются сценариями действий для другой программы, а не прямым машинным кодом.

Например, так работают такие языки программирования, как Python . Вы пишете программу. Затем вводите код в интерпретатор Python , и он выполняет все описанные вами шаги. В командной строке вы можете ввести примерно следующее:

C:>python myprogram.py

В этой команде Python — это исполняемый файл. Вы вводите в него все, что находится в файле myprogram.py, и он выполняет эти инструкции. Компьютер не запустит myprogram.py без Python . Это не машинный код, который понимает процессор. Можно скомпилировать программы Python в объектный или машинный код и запустить его непосредственно в процессоре. Но эта процедура включает в себя компиляцию кода и добавление в качестве ее части всего интерпретатора Python .

Природа интерпретатора

Интерпретаторы могут создаваться по-разному. Существуют интерпретаторы, которые читают исходную программу и не выполняют дополнительной обработки. Они просто берут определенное количество строк кода за раз и выполняют его.

Некоторые интерпретаторы выполняют собственную компиляцию, но обычно преобразуют программу байтовый код, который имеет смысл только для интерпретатора. Это своего рода псевдо машинный язык, который понимает только интерпретатор.

Такой код быстрее обрабатывается, и его проще написать для исполнителя ( части интерпретатора, которая исполняет ), который считывает байтовый код, а не код источника.

Есть интерпретаторы, для которых этот вид байтового кода имеет более важное значение. Например, язык программирования Java « запускается » на так называемой виртуальной машине. Она является исполняемым кодом или частью программы, которая считывает конкретный байтовый код и эмулирует работу процессора. Обрабатывая байтовый код так, как если бы процессор компьютера был виртуальным процессором.

У меня есть эмулятор для игровой приставки NIntendo . Когда я загружаю ROM-файл Dragon Warrior , он форматируется в машинный код, который понимает только процессор NES . Но если я создаю виртуальный процессор, который интерпретирует байтовый код во время работы на другом процессоре, я могу запустить Dragon Warrior на любой машине с эмулятором.

Это использует концепция компиляции Java , а также все интерпретаторы. На любом процессоре, для которого я могу создать интерпретатор / эмулятор, можно запускать мои интерпретируемые программы / байтовый код. В этом заключается основное преимущество интерпретатора над компилятором.

За и против

Основным аргументом за использование процесса компиляции является скорость. Возможность компилировать любой программный код в машинный, который может понять процессор ПК, исключает использование промежуточного кода. Можно запускать программы без дополнительных шагов, тем самым увеличивая скорость обработки кода.

Но наибольшим недостатком компиляции является специфичность. Когда компилируете программу для работы на конкретном процессоре, вы создаете объектный код, который будет работать только на этом процессоре. Если хотите, чтобы программа запускалась на другой машине, вам придется перекомпилировать программу под этот процессор. А перекомпиляция может быть довольно сложной, если процессор имеет ограничения или особенности, не присущие первому. А также может вызывать ошибки компиляции.

Основное преимущество интерпретации — гибкость. Можно не только запускать интерпретируемую программу на любом процессоре или платформе, для которых интерпретатор был скомпилирован. Написанный интерпретатор может предложить дополнительную гибкость. В определенном смысле интерпретаторы проще понять и написать, чем компиляторы.

С помощью интерпретатора проще добавить дополнительные функции, реализовать такие элементы, как сборщики мусора, а не расширять язык.

Другим преимуществом интерпретаторов является то, что их проще переписать или перекомпилировать для новых платформ.

Написание компилятора для процессора требует добавления множества функций, или полной переработки. Но как только компилятор написан, можно скомпилировать кучу интерпретаторов и на выходе мы имеем перспективный язык. Не нужно повторно внедрять интерпретатор на базовом уровне для другого процессора.

Самым большим недостатком интерпретаторов является скорость. Для каждой программы выполняется так много переводов, фильтраций, что это приводит к замедлению работы и мешает выполнению программного кода.

Это проблема для конкретных real-time приложений, таких как игры с высоким разрешением и симуляцией. Некоторые интерпретаторы содержат компоненты, которые называются just-in-time компиляторами ( JIT ). Они компилируют программу непосредственно перед ее исполнением. Это специальные программы, вынесенные за рамки интерпретатора. Но поскольку процессоры становятся все более мощными, данная проблема становится менее актуальной.

Заключение

Всегда июмейте всегда в виду, что некоторые языки программирования специально предназначены для компиляции кода, например, C . В то время как другие языки всегда должны интерпретироваться, например Java .

Для меня не имеет значения, скомпилировано что-то или интерпретировано, если оно может выполнить задачу эффективно.

Некоторые системы не предлагают технические условия для эффективного использования интерпретаторов. Поэтому вы должны запрограммировать их с помощью чего-то, что может быть непосредственно скомпилировано, например C . Иногда нужно выполнить вычисления настолько интенсивно, насколько это возможно. Например, при точном распознавании голоса роботом. В других случаях скорость или вычислительная мощность могут быть не столь критичными, и написать эмулятор на оригинальном языке может быть проще.

Сообщите мне, что бы вы предпочли: интерпретацию или компиляцию? Спасибо за уделенное время!

Компилятор и интерпретатор в программировании: в чем разница

Lorem ipsum dolor

Компиляция — это процесс преобразования программного кода из одного языка программирования в другой. Компилятор — это программа, которая проводит компиляцию.

Компилятор использует всю программу сразу и преобразует ее в код, который сможет запуститься на устройстве. Самый простой пример — это файлы с расширением «.ехе» на Windows. То ест ь в ы пишите какую-то программу для работы под управлением Виндовс, допустим , на языке С++. Сразу запустить ее в системе не получится, потому что система ее не поймет. Поэтому вам нужно будет провести ее через компилятор, то есть скомпилировать. Сделав это , вы получ ите вашу же программу, но уже в «.exe»-файле. Если вы откроете «.exe»-файл вашей программы, тогда вы заметите, что ничего общего с исходным кодом программы на С++ там нет. В «.ехе»-файлах вы увидите непонятный набор символов, но пока еще не двоичный код.

Суть компилятора — это взять всю программу и перевести ее из высокоуровневого представления в низкоуровневое.

Интерпретация и интерпретатор — что это такое?

Интерпретация — это процесс преобразования программного кода из одного языка в другой. Интерпретатор — это программа, которая проводит интерпретацию. Несложно заметить из описания, что интерпретатор и компилятор выполняют похожие операции — они переводят код из высокоуровневого представления в низкоуровневое , о днако делают это по-разному.

Интерпретатор не преобразует всю программу сразу. Процесс преобразования у него поставлен на поток прямо во время работы программы , т о ест ь в ы запускаете программный код, написанный на интерпретируемом языке, и о н преобразуется в машинное представление прямо в процессе.

Так мы дошли до главной мысли : и нтерпретатор и компилятор, по сути, выполняют одну и ту же работу , о днако компилятор преобразует весь код программы перед ее запуском, а интерпретатор преобразует код программы в процессе ее выполнения.

Компилятор и интерпретатор: особенности подходов

Напишем

Компилятор хорош тем, что перед запуском программы он полностью ее обрабатывает. Соответственно, в процессе компиляции происходит оптимизация программного кода ; операторы, переменные, методы, функции проверяются на ошибки. Если в программном коде есть какие-то проблемы, т о компилятор сообщит об этом , и тогда разработчик сможет их исправить. По сути, компилятор как бы «моделирует» новую программу из того кода, что вы написали.

Интерпретатор не моделирует никаких програм м . Принцип его функционирования построен очень просто: он прочитал строчку кода и сразу ее выполнил. Соответственно, если в коде есть ошибка, интерпретатор либо выполнит код с ошибкой, либо не выполнит его вообще , а разработчику придется самостоятельно искать, где возникла проблема у интерпретатора и как исправить эту ошибку.

Невозможно сказать , что лучше: компилятор или интерпретатор, потому что это совершенно разные подходы, которые имеют свои особенности. В некоторых случая х и х применяют вместе, чтобы достичь максимальной производительности программы.

Отметим ряд особенностей интерпретации и компиляции:

  1. После компиляции программный код готов к исполнению на устройстве, так как уже имеет машинное представление.
  2. Скомпилированный код выполняется быстрее, чем исходный код при интерпретировании.
  3. Скомпилированный код сложно откорректировать , п оэтому тут два эффекта : с одной стороны, компиляция защищает исходный код программы от постороннего вмешательства. С другой стороны, если разработчику программы нужно внести какие-то изменения, он это делает в исходном коде, а потом нужно перекомпилировать программу.
  4. Компилятор оптимизирует и определяет наличие ошибок в коде во время компиляции.
  5. Компилятор требует больше системных ресурсов, чем интерпретатор.
  6. Интерпретатор не «грузит» систему, потому что преобразует по одной инструкции за один раз.
  7. Интерпретируемые программы легко корректировать.
  8. При интерпретации путь программы от исходного кода и до ее исполнения короче, чем при компиляции.
  9. Компилятор сохраняет результат своей работы в виде отдельного файла, а интерпретатор выполняет работу «на лету».

Интерпретируется или компилируется программа — зависит от того, на каком языке программирования она написана.

Заключение

Теперь вы знаете, что «компилятор или компиляция» и «интерпретатор или интерпретация» — это разные инструменты одного действия. Это инструменты, которые конвертируют программы, написанные на высокоуровневых языках, в код, который понимает процессор устройства.

Существует много разных мнений насчет того , какой процесс лучше: интерпретация или компиляция. Главный минус интерпретации — это маленькая скорость работы программ, потому что интерпретатору приходится построчно выполнять программу. Главный плюс — программы на интерпретируемых языках пишутся быстрее и легче поддерживаются.

Главный минус компиляции — это сложность поддержки и сложность компилируемых языков. Главный плюс — компилируемые программы работают быстрее.

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Разница между компилятором и интерпретатором

Какая разница между компилятором и интерпретатором? Может ли язык программирования иметь и компилятор и интерпретатор?

Отслеживать
11.5k 8 8 золотых знаков 42 42 серебряных знака 70 70 бронзовых знаков
задан 23 дек 2016 в 8:09
Salut Amigo Salut Amigo
530 1 1 золотой знак 3 3 серебряных знака 18 18 бронзовых знаков
23 дек 2016 в 8:14
Бейсик имел традиционно много разных компиляторов и интерпретаторов.
23 дек 2016 в 8:24
– user181100
23 дек 2016 в 8:40

3 ответа 3

Сортировка: Сброс на вариант по умолчанию

Чтобы опеределить разницу, давайте узнаем, что это такое:

Компиля́тор — программа или техническое средство, выполняющее компиляцию.

Компиля́ция — трансляция программы, составленной на исходном языке высокого уровня, в эквивалентную программу на низкоуровневом языке, близком машинному коду (абсолютный код, объектный модуль, иногда на язык ассемблера). Входной информацией для компилятора (исходный код) является описание алгоритма или программа на предметно-ориентированном языке, а на выходе компилятора — эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код). Википедия

Интерпрета́тор — программа (разновидность транслятора), выполняющая интерпретацию.

Интерпрета́ция — пооператорный (покомандный, построчный) анализ, обработка и тут же выполнение исходной программы или запроса (в отличие от компиляции, при которой программа транслируется без её выполнения). Википедия

Таким образом, можно заключить, что компилятор преобразует исходный код к близкому к машинному коду. Интерпретатор же, позволяет выполнять некоторое представление программы, налету преобразуя в машинный код.

Если взять язык java , то он имеет, как компилятор, так и интерпретатор. Компилятор преобразует исходный код в байткод. А байткод в начальной стадии выполнения программы обрабатывается интерпретатором.

Компилятор, это отдельная программа javac , интерпретатор же встроен в jvm . Помимо обычного компилятора, в jvm присутствует just-in-time компиляция. т.к. интерпретация довольно медленна, то горячие места в программе компилируются в машинный код jit компилятором, тем самым ускоряя выполнение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *