Что такое рекурсия в программировании
Перейти к содержимому

Что такое рекурсия в программировании

  • автор:

Простыми словами о рекурсии

В программировании рекурсия, или же рекурсивная функция — это такая функция, которая вызывает саму себя.

Рекурсию также можно сравнить с матрёшкой. Первая кукла самая большая, за ней идёт точно такая же кукла, но поменьше. Суть матрёшки состоит в том, что вы можете открывать её и доставать из неё точно такую же куклу, только немного меньше. Такой продолжительный процесс длится до тех пор, пока вы не дойдёте до последней куклы, которая и прервёт цикл. Так выглядит визуальная репрезентация рекурсии.

Не приведёт ли рекурсивная функция к бесконечному циклу?

Да, такой исход вполне возможен. Однако, как и у функции for или while , рекурсию можно прервать условием break , чтобы функция перестала вызывать саму себя.

Вот пример кода того, как можно реализовать функцию обратного отсчёта с использованием рекурсии:

function countDown(n)console.log(n)if(n > 1) countDown(n -1) // вызов рекурсии
> else return true // основное действие
>
>
countDown(5)
// 5
// 4
// 3
// 2
// 1
countDown(-1)
// - 1
// true

Как прервать рекурсию:

Допустим, у нас имеется функция CountDown , которая принимает аргумент (n) . Чтобы реализовать обратный отсчёт, нам следует повторить последовательность действий, понижающих значение параметра. Создадим условие вида:

Если (n) больше 1 , то вызвать функцию CountDown и вернуться в начало цикла, затем вычесть единицу и снова проверить, выполняется ли условие (n) > 1 .

По умолчанию нам нужно создать базовое условие функции, возвращающее значение true , чтобы предотвратить попадание в бесконечный цикл. Базовым условием функции здесь будет условие о том, что любое значение больше 1 не вызовет прерывание цикла.

Проще говоря, рекурсия делает то же, что и код ниже:

countDown(5) 
countDown(4)
countDown(3)
countDown(2)
countDown(1)
return
return
return
return
return

Плюсы и минусы рекурсивных функций

Чтобы правильно описать плюсы и минусы, давайте взглянем на производительность рекурсии.

Плюсы:

  • Рекурсивный код снижает время выполнения функции.

Под этим подразумевается, что рекурсии, в сравнении с циклами, тратят меньше времени до завершения функции. Чем меньше строк кода у нас будет, тем быстрее функция будет обрабатывать вызовы внутри себя. Особенно хорошо это проявляется при буферизации данных, что позволяет оптимизировать и ускорить код.

В программировании мемоизация — это метод сохранения результатов выполнения функций для предотвращения повторных вычислений. Это один из способов оптимизации, применяемый для увеличения скорости выполнения программ. — Википедия

И всё же стоит отметить, что рекурсия не всегда выигрывает по скорости по сравнению с циклами.

Многие согласятся, что эта причина очень важна. Рекурсия проста в отладке из-за того, что она не содержит сложных и длинных конструкций.

Минусы:

  • Рекурсивные функции занимают много места.

Рекурсивные функции занимают значительный объём памяти во время своего выполнения. Это означает, что при каждом вызове функции в стек будет добавляться новый элемент, который будет занимать место до тех пор, пока функция не завершит работу, найдя ответ, либо пока не дойдёт до выполнения базового условия функции.

  • Рекурсивные функции замедляют программу.

Несмотря на то, что уже было сказано про мемоизацию, наш код можно ускорить, если применить циклы for или while . Помимо того, что функция может быть попросту плохо написана, мы также рискуем переполнить стек, что в конечном итоге приведёт к снижению скорости и программным ошибкам.

Что такое «стек»?

Стек — это такая структура данных, которая работает по принципу «Last In, First Out» (последним пришёл — первым ушёл). Таким образом, элемент «проталкивается» в стек и добавляется в его конец, а затем «выталкивается» из стека при удалении.

Стеки замечательны тем, что они очень быстрые. Большое «О» этого алгоритма равно O(1). Такая результативность объясняется тем, что при рекурсиях не используются циклы, вместо них используются функции pop() , push() и empty() .

Стоит ли использовать рекурсии вместо обычных циклов?

Оба этих метода одинаково эффективны для решения задач, однако выбор одного из них зависит от типа проблемы, поставленной перед вами.

Рекурсии эффективны тогда, когда вы работаете с данными, которые слишком сложны, чтобы пройтись по ним с помощью обычных циклов. Стоит также не забывать о ценности памяти и уменьшении времени, идущем вкупе с рекурсивной функцией, в которой накопилось слишком много элементов.

Циклы так же эффективны в плане скорости и оптимизации, они занимают меньше памяти в стеке и их легче понять, потому что в теле цикла содержится больше информации о том, что происходит внутри.

  • Как освоить алгоритмы?
  • Алгоритмы машинного обучения простым языком. Часть 1
  • 4 принципа успешной поисковой системы и не только

Как работает рекурсия – объяснение в блок-схемах и видео

Представляю вашему вниманию перевод статьи Beau Carnes How Recursion Works — explained with flowcharts and a video.

«Для того чтобы понять рекурсию, надо сначала понять рекурсию»

Рекурсию порой сложно понять, особенно новичкам в программировании. Если говорить просто, то рекурсия – это функция, которая сама вызывает себя. Но давайте попробую объяснить на примере.

Представьте, что вы пытаетесь открыть дверь в спальню, а она закрыта. Ваш трехлетний сынок появляется из-за угла и говорит, что единственный ключ спрятан в коробке. Вы опаздываете на работу и Вам действительно нужно попасть в комнату и взять вашу рубашку.

Вы открываете коробку только чтобы найти… еще больше коробок. Коробки внутри коробок и вы не знаете, в какой из них Ваш ключ. Вам срочно нужна рубашка, так что вам надо придумать хороший алгоритм и найти ключ.

Есть два основных подхода в создании алгоритма для решения данной проблемы: итеративный и рекурсивный. Вот блок-схемы этих подходов:

Какой подход для Вас проще?

В первом подходе используется цикл while. Т.е. пока стопка коробок полная, хватай следующую коробку и смотри внутрь нее. Ниже немного псевдокода на Javascript, который отражает то, что происходит (Псевдокод написан как код, но больше похожий на человеческий язык).

function look_for_key(main_box) < let pile = main_box.make_a_pile_to_look_through(); while (pile is not empty) < box = pile.grab_a_box(); for (item in box) < if (item.is_a_box()) < pile.append(item) >else if (item.is_a_key()) < console.log("found the key!") >> > >

В другом подходе используется рекурсия. Помните, рекурсия – это когда функция вызывает саму себя. Вот второй вариант в псевдокоде:

function look_for_key(box) < for (item in box) < if (item.is_a_box()) < look_for_key(item); >else if (item.is_a_key()) < console.log("found the key!") >> >

Оба подхода выполняют одно и тоже. Основный смысл в использовании рекурсивного подхода в том, что однажды поняв, вы сможете легко его читать. В действительности нет никакого выигрыша в производительности от использования рекурсии. Порой итеративный подход с циклами будет работать быстрее, но простота рекурсии иногда предпочтительнее.

Поскольку рекурсия используется во многих алгоритмах, очень важно понять как она работает. Если рекурсия до сих пор не кажется Вам простой, не беспокойтесь: Я собираюсь пройтись еще по нескольким примерам.

Граничный и рекурсивный случай

То, что Вам необходимо принять во внимание при написании рекурсивной функции – это бесконечный цикл, т.е. когда функция вызывает саму себя… и никогда не может остановиться.
Допустим, Вы хотите написать функцию подсчета. Вы можете написать ее рекурсивно на Javascript, к примеру:

// WARNING: This function contains an infinite loop! function countdown(i) < console.log(i) countdown(i - 1) >countdown(5); // This is the initial call to the function.

Эта функция будет считать до бесконечности. Так что, если Вы вдруг запустили код с бесконечным циклом, остановите его сочетанием клавиш «Ctrl-C». (Или, работая к примеру в CodePen, это можно сделать, добавив “?turn_off_js=true” в конце URL.)

Рекурсивная функция всегда должна знать, когда ей нужно остановиться. В рекурсивной функции всегда есть два случая: рекурсивный и граничный случаи. Рекурсивный случай – когда функция вызывает саму себя, а граничный – когда функция перестает себя вызывать. Наличие граничного случая и предотвращает зацикливание.

И снова функция подсчета, только уже с граничным случаем:

function countdown(i) < console.log(i) if (i else < // recursive case countdown(i - 1) >> countdown(5); // This is the initial call to the function.

То, что происходит в этой функции может и не быть абсолютно очевидным. Я поясню, что произойдет, когда вы вызовете функцию и передадите в нее цифру 5.

Сначала мы выведем цифру 5, используя команду Console.Log. Т.к. 5 не меньше или равно 1, то мы перейдем в блок else. Здесь мы снова вызовем функцию и передадим в нее цифру 4 (т.к. 5 – 1 = 4).

Мы выведем цифру 4. И снова i не меньше или равно 1, так что мы переходим в блок else и передаем цифру 3. Это продолжается, пока i не станет равным 1. И когда это случится мы выведем в консоль 1 и i станет меньше или равно 1. Наконец мы зайдем в блок с ключевым словом return и выйдем из функции.

Стек вызовов

Рекурсивные функции используют так называемый «Стек вызовов». Когда программа вызывает функцию, функция отправляется на верх стека вызовов. Это похоже на стопку книг, вы добавляете одну вещь за одни раз. Затем, когда вы готовы снять что-то обратно, вы всегда снимаете верхний элемент.

Я продемонстрирую Вам стек вызовов в действии, используя функцию подсчета факториала. Factorial(5) пишется как 5! и рассчитывается как 5! = 5*4*3*2*1. Вот рекурсивная функция для подсчета факториала числа:

function fact(x) < if (x == 1) < return 1; >else < return x * fact(x-1); >> 

Теперь, давайте посмотрим что же происходит, когда вы вызываете fact(3). Ниже приведена иллюстрация в которой шаг за шагом показано, что происходит в стеке. Самая верхняя коробка в стеке говорит Вам, что вызывать функции fact, на которой вы остановились в данный момент:

Заметили, как каждое обращение к функции fact содержит свою собственную копию x. Это очень важное условие для работы рекурсии. Вы не можете получить доступ к другой копии функции от x.

Нашли уже ключ?

Давайте кратенько вернемся к первоначальному примеру поиска ключа в коробках. Помните, что первым был итеративный подход с использованием циклов? Согласно этому подходу Вы создаете стопку коробок для поиска, поэтому всегда знаете в каких коробках вы еще не искали.

Но в рекурсивном подходе нет стопки. Так как тогда алгоритм понимает в какой коробке следует искать? Ответ: «Стопка коробок» сохраняется в стеке. Формируется стек из наполовину выполненных обращений к функции, каждое из которых содержит свой наполовину выполненный список из коробок для просмотра. Стек следит за стопкой коробок для Вас!

И так, спасибо рекурсии, Вы наконец смогли найти свой ключ и взять рубашку!

Вы также можете посмотреть мое пятиминутное видео про рекурсию. Оно должно усилить понимание, приведенных здесь концепций.

Заключение от автора

Надеюсь, что статья внесла немного больше ясности в Ваше понимание рекурсии в программировании. Основой для статьи послужил урок в моем новом видео курсе от Manning Publications под названием «Algorithms in Motion». И курс и статься написаны по замечательной книге «Grokking Algorithms», автором которой является Adit Bhargava, кем и были нарисованы все эти замечательные иллюстрации.

И наконец, чтобы действительно закрепить свои знания о рекурсии, Вы должны прочитать эту статью, как минимум, еще раз.

От себя хочу добавить, что с интересом наблюдаю за статьями и видеоуроками Beau Carnes, и надеюсь что Вам тоже понравилась статья и в особенности эти действительно замечательные иллюстрации из книги A. Bhargav «Grokking Algorithms».

  • рекурсия
  • алгоритмы
  • обучение программированию
  • образование
  • javascript
  • перевод

Что такое рекурсия, рекурсивный и итеративный процесс в программировании

Что такое рекурсия, рекурсивный и итеративный процесс в программировании главное изображение

Рекурсия vs рекурсивный или итеративный процесс: в чем разница

Рекурсия — это функция, которая вызывает саму себя, но с другими значениями параметров.

На самом деле понятия рекурсии и процесса никак не связаны. Рекурсия — просто абстрактная концепция, которую можно наблюдать в природе, в математике и в других областях. Такая же абстрактная, как, например, музыкальная гармония.

Теперь давайте поговорим о компьютерах. Для выполнения задач им нужны инструкции. Когда компьютер выполняет набор инструкций — это процесс. Ваш работающий сейчас браузер — тоже процесс. Простой цикл, выводящий на экран десять раз число «42» — также процесс.

Некоторые задачи можно решать рекурсивно, то есть использовать концепцию, когда что-то является частью самого себя, в инструкциях. В частности, функция может быть частью самой себя, то есть вызывать саму себя.

Бесплатные курсы по программированию в Хекслете

  • Освойте азы современных языков программирования
  • Изучите работу с Git и командной строкой
  • Выберите себе профессию или улучшите навыки

Методы решения задач с помощью рекурсии

Есть два метода решения задач с использованием рекурсии: рекурсивный процесс и итеративный процесс. Рекурсия в них не отличается: в каждом из подходов функция вызывает саму себя, рекурсивно. Отличаются способы использования идеи рекурсии.

Давайте продолжим аналогию с музыкальной гармонией и подумаем про фортепиано. При написании музыки используем эту концепцию — «гармонию звуков». Можно придумать разные способы: рассчитывать частоты звуков — ноты — математическими формулами или рассчитывать правильные расстояния между клавишами.

В детстве я научился находить правильные расстояния между клавишами на фортепиано, и получал гармоничные комбинации звуков, но понятия не имел, что это за ноты. А профессиональный музыкант знает теорию и подбирает гармонию другими методами. В любом случае, гармония есть гармония, эта концепция не меняется, меняются лишь способы ее использования.

В чем отличие рекурсивного процесса от итеративного

Рекурсивный процесс на каждом шаге рекурсии говорит «я это запомню и потом посчитаю». «Потом» наступает в самом конце.

  • Если рекурсивный процесс считает факториал 6, то ему нужно запомнить 5 чисел, чтобы посчитать их в самом конце, когда уже никуда не деться и рекурсивно двигаться вниз больше нельзя
  • Когда мы находимся в очередном вызове функции, то где-то снаружи этого вызова в памяти хранятся эти запомненные числа

На этой картинке видно, как растет использование памяти: процессу нужно запоминать все больше и больше чисел

Рекурсивный процесс — это процесс с отложенным вычислением.

Итеративный процесс постоянно говорит «я сейчас посчитаю все что можно и продолжу» на каждом шаге рекурсии. Ему не нужно ничего запоминать вне вызова, он всегда все считает в первый возможный момент. Каждый шаг рекурсии может существовать в изоляции от прошлых, потому что вся информация передается последовательно.

  • Когда итеративный процесс считает факториал 6, то ему не нужно запоминать числа. Нужно лишь считать и передавать результат дальше, в новый вызов
  • Когда мы находимся в очередном вызове функции, снаружи этого вызова в памяти ничего не нужно запоминать

А на этой картинке видно, что использование памяти не растет.

Подытожим в шуточной форме. Рекурсивный процесс — это чувак, который все дела откладывает на вечер пятницы. В течение недели у него мало работы, а в пятницу завал. Но ему так нравится.

Итеративный процесс — это чувак, который все делает при первой возможности. У него работа равномерно распределена по неделе, а пятница — просто обычный день, но последний.

Что такое рекурсивные функции и в чем особенность их применения

Рекурсивные функции — это те функции, которые используют итеративный процесс. Для каждого рекурсивного вызова в стек вызовов записывается вся информация, связанная с этим вызовом, вроде параметров функции и ее локальных переменных, адреса возврата в точку вызова.

Для рекурсивной функции выделяется дополнительная область памяти — лексический контекст функции, область видимости —, которая обслуживает рекурсивный вызов. Так как это стек вызовов, то контексты предыдущих рекурсивных вызовов также продолжают занимать память.

Достижение большой глубины рекурсии, или же, недостижение терминального условия выхода из рекурсии, приводит к переполнению стека, так как он ограничен в размерах, и аварийному завершению всей программы.

Читайте также: Как проверить качество кода: функциональное и нефункциональное тестирование

В контексте каждого рекурсивного вызова такой функции хранится вся необходимая информация для его успешного выполнения. Он самодостаточен и никак не зависит от предыдущих контекстов. Помните, что этот чувак ничего не откладывает на потом, на вечер пятницы?

В наших практиках на Хекслете мы реализовывали такое поведение благодаря использованию аккумулятора acc, который передается в качестве аргумента из одного вызова в другой и накапливает в себе результат вычисления необходимого значения.

Получается, что, грубо говоря, на каком бы по уровню вложенности рекурсивном вызове мы не находились, все предыдущие уже не имеют значения и являются «бесполезной обузой», нагружающей память. Это распространяется в том числе и на самый последний рекурсивный вызов, где срабатывает терминальное условие. Он готов вернуть готовое вычисленное значение из функции сразу, ему не нужны для этого предыдущие контексты в стеке.

Что такое хвостовая рекурсия

Как использовать преимущества итеративного процесса и одновременно избавиться от недостатка рекурсивных функций, то есть от неумолимого роста использования памяти? Можно избавить процесс от заполнения стека «ненужными» контекстами предыдущих вызовов и обеспечить прямой возврат из функции при достижении терминального условия.

Для этого служит так называемая оптимизация хвостовой рекурсии (Tail call optimization). Итеративный процесс, который мы рассмотрели, как раз можно отнести к хвостовой рекурсии. Благодаря оптимизации состояния стека, она придает итеративному процессу вид «плоской» итерации. Так исключается его переполнение из-за большой глубины рекурсии.

Хвостовая рекурсия и ее оптимизация широко используется при написании программ на функциональных языках программирования.

Бесплатные курсы по программированию в Хекслете

  • Освойте азы современных языков программирования
  • Изучите работу с Git и командной строкой
  • Выберите себе профессию или улучшите навыки

Рекурсия в программировании и как ее применять

Что такое “бизнес логика”? И как начать ее понимать

Что такое сигнатура в программировании: терминология и примеры

Что такое консоль в программировании, отличие от командной строки

Что такое компиляция, линковка, run time?

Что такое framework? Объяснение для новичков

Рекурсия — это повторение шаблона с небольшими изменениями. Вокруг нас множество примеров рекурсии, начиная с окон готического собора, заканчивая соцветием капусты. Но нас интересует, что такое рекурсия в программировании, когда ее надо применять, и какие у нее недостатки.

Определение рекурсии в программировании

Рекурсия — это метод программирования, который позволяет функции многократно вызывать себя до тех пор, пока не будет выполнено условие завершения. Условие завершения заставит функцию вернуть значение или выполнить какое-либо действие, либо вызвать переполнение стека и сбой программы.

Преимущества рекурсии

  • Краткость и понятность кода.
  • Высокая производительность на рекурсивных задачах.
  • Эффективность использования памяти.
  • Функциональное программирование с помощью рекурсий.
  • Простота использования.

Недостатки рекурсии

  • Возможность переполнения стека.
  • Низкая производительность на многоуровневых задачах.
  • Более сложная реализация.
  • Неуниверсальность применения.
  • Подходит не для всех языков программирования.
  • Подходит не для всех сред из-за возможных проблем с памятью.

Когда стоит использовать рекурсию, а когда не стоит

Когда использовать рекурсию:

  • Рекурсия — хороший выбор, когда проблему можно разбить на более мелкие подзадачи, которые можно решить одним и тем же методом.
  • Рекурсия часто используется в функциональном программировании, так как позволяет компоновать и комбинировать функции.

Когда не надо использовать рекурсию:

  • Если размер стека ограничен или рекурсия может быть слишком глубокой.
  • Если разработчик недостаточно опытен для создания многоуровневой рекурсии.
  • Если язык разработки ограничен в поддержке рекурсии.
  • Если в задаче предполагается обработка больших массивов данных.

Рекурсия в различных языках программирования

Рекурсия — это понятие, существующее в большинстве языков программирования, и каждый из них имеет свою специфику и возможности. Некоторые из языков, поддерживающих рекурсию, — это Java, Python, JavaScript, C#, PHP, Ruby, Rust, Clojure и другие. В этих языках функции могут вызывать сами себя и рекурсивно решать проблемы.

Рекурсия в языке Python

В языке Python рекурсия используется с помощью функций, которые имеют рекурсивные вызовы, здесь используются генераторы, методы и классы. Кроме того, Python может использовать универсальные типы, подходящие для рекурсивных вызовов, такие как список, кортеж, диапазон.

Самый распространенный способ использования рекурсии в Python — это использование функций, которые рекурсивно вызывают сами себя. Например, функция, которая должна вычислять факториал чисел, принимает один параметр (число). Функция вызывается рекурсивно до тех пор, пока не будет достигнуто число, меньшее или равное 1, после чего она возвращает свой результат.

Рекурсия в языке Java

Рекурсия хорошо поддерживается языком программирования Java и широко в нем распространена. Типичные задачи: реализация обхода дерева, решение задач динамического программирования и реализация методов функционального программирования.

Мы помним, что рекурсия может вызвать переполнение стека. Чтобы избежать этого, используют оптимизацию хвостовой рекурсии, которая позволяет сократить рекурсию до простой итерации, чтобы стек не стал слишком большим.

Рекурсия в языке C++

Рекурсия также поддерживается в языке программирования C++ для решения самых разных задач.

Рекурсию в C++ также можно оптимизировать, чтобы избежать риска переполнения стека и повысить производительность. C++ включает в себя функцию оптимизации хвостового вызова, которая позволяет проводить оптимизацию, аналогичную хвостовой рекурсивной оптимизации Java.

Рекурсия в функциональных языках программирования

В языках функционального программирования рекурсия широко используется как основной строительный блок. Рекурсия лежит в основе многих распространенных методов, таких как отображение, свертывание и развертывание.

В Haskell, одном из самых популярных языков функционального программирования, рекурсия может использоваться для решения самых разных задач, от обработки текста до сетевого анализа и научного моделирования.

Рекурсия широко используется в других языках функционального программирования, включая Lisp, Scheme, Clojure, F#, OCaml, Standard ML и Erlang.

Как прервать рекурсию

В некоторых случаях рекурсия останавливается при достижении базового случая или сценария, при котором функция больше не вызывается. Это позволяет программе завершить работу и вернуть результат.

В других случаях рекурсия останавливается при достижении предела вызовов, установленного языком программирования или системой времени выполнения. Когда этот предел достигнут, рекурсивно вызываемая функция выдает исключение или программа завершается.

Кроме того, рекурсивные функции может останавливать защита, которая проверяет предварительно определенное условие, например достижение определенной глубины рекурсии или обнаружение определенного значения.

В общем, остановка рекурсии важна, чтобы избежать бесконечных циклов и исчерпания ресурсов, таких как память или пространство стека.

Что выбрать: рекурсию или цикл

Использовать рекурсию рекомендуется, когда решаемая проблема естественно рекурсивна по своей природе, например, дерево поиска или вычисление факториала

Цикличные алгоритмы могут быть более эффективными в определенных сценариях, особенно при работе с большими наборами данных. В этих случаях цикл более эффективен и менее требователен к памяти.

В заключение

Многие современные языки программирования поддерживают как рекурсию, так и цикл. Можно переключаться между ними по мере необходимости, чтобы найти наиболее подходящее решение.

Похожие материалы

Что такое “бизнес логика”? И как начать ее понимать

Что такое сигнатура в программировании: терминология и примеры

Что такое консоль в программировании, отличие от командной строки

Что такое компиляция, линковка, run time?

Что такое framework? Объяснение для новичков
Что можно использовать вместо рекурсии?

В некоторых задачах рекурсию можно заменить циклом. Рекурсивный алгоритм может быть заменен итеративным. В некоторых случаях стоит добавить дополнительную структуру данных, как правило, стек.

Почему рекурсивные алгоритмы работают медленнее?

Рекурсивные алгоритмы далеко не всегда работают медленнее цикличных. Обычно это происходит, когда ограничен размер стека или рекурсия очень глубокая. В этом случае стек переполняется, программа начинает тормозить, а затем закрывается с ошибкой.

Как оптимизировать рекурсию в программе?

Во многих средах разработки для разных языков программирования, таких как Java, C++, и других, встроены возможности для TCO — оптимизации хвостовой рекурсии. Можно также провести оптимизацию вручную, но это сложнее и дольше по времени.

Как работает рекурсия в программировании?

Когда функция вызывает саму себя, происходит создание новых экземпляров функции в стеке вызовов. Каждый экземпляр функции имеет свое собственное локальное состояние и выполнение продолжается до достижения базового случая, который останавливает рекурсию. Затем выполнение возвращается к предыдущим экземплярам функции в обратном порядке.

Что такое базовый случай в рекурсии и почему он важен?

Базовый случай в рекурсии — это условие, при котором рекурсивные вызовы прекращаются и рекурсия завершается. Он важен, чтобы предотвратить бесконечную рекурсию и обеспечить завершение функции. Без базового случая рекурсивная функция будет вызываться бесконечное количество раз.

Какая разница между прямой и косвенной рекурсией?

Прямая рекурсия возникает, когда функция вызывает саму себя напрямую. Например, функция для вычисления факториала может вызывать саму себя с аргументом, уменьшенным на 1. Косвенная рекурсия возникает, когда функция A вызывает функцию B, которая, в свою очередь, вызывает функцию A. Такие вызовы образуют замкнутый цикл взаимных вызовов функций.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *